Methylmercury activates enhancer-of-split and bearded complex genes independent of the notch receptor.

نویسندگان

  • Matthew D Rand
  • Christin E Bland
  • Jeffrey Bond
چکیده

Methylmercury (MeHg) is a persistent environmental toxin that has targeted effects on fetal neural development. Although a number of cytotoxic mechanisms of MeHg have been characterized in cultured cells, its mode of action in the developing nervous system in vivo is less clear. Studies of MeHg-affected rodent and human brains show disrupted cortical and cerebellar architecture suggestive of mechanisms that augment cell signaling pathways potentially affecting cell migration and proliferation. We previously identified the Notch receptor pathway, a highly conserved signaling mechanism fundamental for neural development, as a target for MeHg-induced signaling in Drosophila neural cell lines. Here we have expanded our use of the Drosophila model to resolve a broader spectrum of transcriptional changes resulting from MeHg exposure in vivo and in vitro. Several Notch target genes within the Enhancer-of-split (E(spl)C) and Bearded (BrdC) complexes are upregulated with MeHg exposure in the embryo and in cultured neural cells. However, the profile of MeHg-induced E(spl)C and BrdC gene expression differs significantly from that seen with activation of the Notch receptor. Targeted knockdown of Notch and of the downstream coactivator Suppressor of Hairless (Su(H)), shows no effect on MeHg-induced transcription, indicating a novel Notch-independent mechanism of action for MeHg. MeHg transcriptional activation is partially mimicked by iodoacetamide but not by N-ethylmaleimide, two thiol-specific electrophiles, revealing a degree of specificity of cellular thiol targets in MeHg-induced transcriptional events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antagonism of notch signaling activity by members of a novel protein family encoded by the bearded and enhancer of split gene complexes.

Cell-cell signaling through the Notch receptor is a principal mechanism underlying cell fate specification in a variety of developmental processes in metazoans, such as neurogenesis. In this report we describe our investigation of seven members of a novel gene family in Drosophila with important connections to Notch signaling. These genes all encode small proteins containing predicted basic amp...

متن کامل

The enhancer of split complex of Drosophila includes four Notch-regulated members of the bearded gene family.

During Drosophila development, transcriptional activation of genes of the Enhancer of split Complex (E(spl)-C) is a major response to cell-cell signaling via the Notch (N) receptor. Although the structure and function of the E(spl)-C have been studied intensively during the past decade, these efforts have focused heavily on seven transcription units that encode basic helix-loop-helix (bHLH) rep...

متن کامل

Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity.

We have investigated the functional relationships among three loci that are required for multiple alternative cell fate decisions during adult peripheral neurogenesis in Drosophila: Notch (N), which encodes a transmembrane receptor protein, Suppressor of Hairless [Su(H)], which encodes a DNA-binding transcription factor, and the Enhancer of split gene complex [E(spl)-C], which includes seven tr...

متن کامل

Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development.

The basic helix-loop-helix proteins of the Enhancer of split complex constitute a link between activation of the transmembrane receptor Notch and the resulting effects on transcription of downstream genes. The Suppressor of Hairless protein is the intermediary between Notch activation and expression of all Enhancer of split genes even though individual genes have distinct patterns of expression...

متن کامل

The effects of methylmercury on Notch signaling during embryonic neural development in Drosophila melanogaster.

Methylmercury (MeHg) is a ubiquitous toxicant that targets the developing fetal nervous system. MeHg interacts with the Notch signaling pathway, a highly-conserved intercellular signaling mechanism required for normal development. Notch signaling is conveyed by activation of the genes in the enhancer of split (E(spl)) locus in Drosophila. We have previously shown that acute high doses of MeHg u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2008